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Abstract —The variational principle for nonstandard eigenvalue prob-
lems, recently reported by one of the authors, is applied for the study of
guided-wave propagation in an anmisotropic dielectric waveguide. A sta-
tionary functional is derived for the general dielectric waveguide with
transverse anisotropy. The functional is tested for the well-known case of
an isotropic step-index single-mode fiber. It is seen that for simple trial
functions with only two parameters, a good accuracy is obtained. For two
types of transversely anisotropic step-index fibers, relations between the
propagation factor, anisotropy parameter, dielectric parameter, and
frequency are calculated. The functional does not assume weak guidance
condition nor perturbational anisotropy and, hence, is also applicable for
other dielectric waveguides. In this application, only a modest computer or
a programmable calculator is needed. Moreover, the spurious modes caus-
ing confusion in the finite-element method of calculation do not appear
with the present method.

I. INTRODUCTION

HE OPTICAL FIBER has become one of the most

studied subjects in electromagnetics because of its
phenomenological property of wave guidance with ex-
tremely low losses. In recent years, the single-mode fiber
has been favored because of its small dispersion, but the
problem has been the degeneracy in the polarization of the
basic HE,; mode in fibers with circular symmetry. Because
of this, the small imperfections in the ambient conditions
of the fiber have the effect of making the polarization of
the mode a statistically varying quantity after a few meters
of propagation in the fiber [1]-[5], a fact that has been
counteracted by producing noncircular or transversely an-
isotropic fibers. By analysis and actual fabrication, it has
been shown that the noncircularity in most cases is insuffi-
cient to produce the required separation of the polarization
degenerate mode propagation coefficients, whereas by in-
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troducing mechanical stress in the fiber, an anisotropy can
be obtained high enough to produce a separation sufficient
in practice [3], [6]-[17]. This motivates an analysis of the
dielectric waveguide with transverse anisotropy, because
although the longitudinal anisotropy has been well studied
[18]-[21], there only exist a few attempts with more general
anisotropy: mainly perturbational or dealing with special
structures [22]-[26].

The analysis applies the variational principle in the
general eigenvalue problem which was called nonstandard
in a recent study by one of the authors [27]. Here, the
problem can be expressed in abstract operator form as

L(A)f=0 1)

where A is the ecigenvalue parameter of the problem. If
L(M) is a linear function on A, (1) is a standard eigenvalue
problem, otherwise it is called nonstandard. The parameter
A may be chosen at will among all the physical and
geometrical parameters involved in the problem. In prob-
lems dealing with closed waveguides, there is an additional
equation corresponding to boundary conditions, which,
however, is absent in our present problem. The method is
based on the following functional equation obtained
through definition of an inner product (.,.):

(f,L(A)f) =0, @)

If the operator L is self adjoint with respect to this inner
product, it was shown that (2) possesses stationary roots
for the parameter A [27]. If we can solve (2) for A, a
stationary functional for A is obtained, which can be ap-
plied for an approximative solution of the problem (1) in a
well-known manner [28]. In more complicated problems,
however, no explicit solution of (2) for the parameter A can
be found. In this case, we may try to take another parame-
ter of the problem as our eigenvalue parameter A. If none
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of the parameters is solvable from (2) in explicit form, we
can define new parameters out of the old ones and try to
solve (2) for one of them. It is self-evident that this also
leads to a stationary functional, because, if in the original
problem (1) the parameters are redefined, a functional
equation (2) with a new set of parameters arises. Hence, the
change of parameters can also be made in (2).

In Section II, the nonstandard equation (1) is derived for
longitudinal field components, leading to a self-adjoint
problem, which is of the nonstandard form in all parame-
ters. By defining new independent parameters, an explicit
stationary functional can be written for the parameter w?.
In Section III, the functional is tested for the step-index
isotropic fiber. It is seen that for a two-parameter test
function, a good accuracy is obtained for the dispersion
relation. In Section IV, the functional is applied to two
types of transversely anisotropic fibers: one with an aniso-
tropic core and an isotropic cladding and the other with
both the core and cladding anisotropic, and relations be-
tween different parameters are calculated. Because the
method is very general, and also boundary conditions
could be introduced as in a previous study [29] for iso-
tropic waveguides, the present procedure can be applied to
other waveguide structures with anisotropic media.

II. THEORY

We consider a dielectric guiding structure with dyadic
permittivity inhomogeneous in the x—y plane. The ¢ dy-
adic is supposed to possess the guiding direction unit
vector # ( = u,) as its eigenvector so that we have

e(p)-u=e,(o)u. 3)
Moreover, € is assumed to be a symmetric dyadic, as is the
case for crystal media. Henceforth, we write e(p)+¢,(p)uu
instead of e(p), or boldface € denotes the two-dimensional
part of the permittivity tensor.

Analogously with [29], we derive equations for the longi-
tudinal fields. In fact, writing the guided fields as E(r) =

(e(p)+ue(p)) exp(— jBz) and H(r)=(h(p)+uh(p))
exp(— jBz), from Maxwell’s equations we have

v-(uxe)— joph=0 (4)
v-(uXh)+ jwe,e=0 (5)
uXve+ jBuxe— jouh=0 (6)
uX Vh+ jBuXh+ joe-e=0. (7)

Lf=

From these equations, the transversal field vectors e, & can
be eliminated. Equations (6) and (7), then, give us

e=—jk;*(BVe— wpux vh) (®)
h= juxk;*(—we-vVe+ BuxX vh) 9)

if we define
k2= w*pe—B’E (10)

wv-(k;*e-ve)+we,e— B (k72 ux vh)
BV-((k;23Suu)-(u X Ve))+wuv-((k;2§uu)-vh)+w,uh
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where E is the two-dimensional unit dyadic E = I — uun.
The dyadic k? is two-dimensional and because det(k2) =0,
it does not possess a three-dimensional inverse. It does,
however, possess a two-dimensional inverse, which can be
uniquely written as [30] o

k2= (k§§uu)/s§m(k3). (11)

The double-cross product of two dyadics is defined
through (ab)*(cd)= (a X c)}(bXd) and spm( ) is the
two-dimensional determinant function (‘sum of principal
minors’ of the three-dimensional dyadic) defined by spm A4
=A% A:1/2. That (11) is really valid can be checked by
writing k? in component form. Because a symmetric dyadic
always possesses three orthogonal eigenvectors, we can
write the two-dimensional dyadic ¢ as

(12)
with u, v, w an orthonormal system of unit vectors. Insert-
ing (12) in (10) we have

kZ=kZovv+ k2 ww with

€e=¢€, 00+ € ww

ki = w’pe, — B2,
i=v,w. (13)
Hence, (11) gives us

k7% =k, oo+ k_ ww. (14)
To obtain the equations for the longitudinal fields we

substitute (8), (9) in (4), (5) |
v (k7% uu)-(Bu x ve + wpvh))+oph=0 (15)
V- (k72 (we-ve— BuX Vh))+we,e=0. (16)
Equations (15) and (16) constitute a pair of equations
which are going to apply in our analysis. The operator L
operates on the pair of scalar functions (e, #), which we
denote by fin our abstract linear space. Defining the inner
product (.,.) by

(i f)= flessm)| 2] as a

‘'where the integration extends over the whole x— y plane,

we have to define the explicit form of the operator L in
such a way that it is self-adjoint with respect to the inner
product (17). As boundary conditions, we take exponential
decay of the fields e and 4 as p — oo, because only such
guided solutions are of interest to us for the moment. It
can be readily demonstrated that the definition

(18)

leads to a self-adjoint operator. In fact, we can evaluate
(fi, L) = f(_ wVel-(kc_z-e)~Ve2
-+ we 18, — WUV Ay (kc’zié uu)-Vh2
+ ophihy — BVhy u X (k7?)-ve,

—BVh,-uxk:*ve,)dsS
] 1 c 2

(19)



738

when we note that the divergence terms, reduced to line
integrals at infinity, does not contribute because of the
assumed exponential decay of the fields.

To be self-adjoint, the operator L in (19) should give an
expression symmetric in 1 and 2. If ¢ is a symmetric dyadic,
as presumed, we can readily check that every term in (19)
is symmetric except for the last two, which, however, form
a symmetric pair. So, L is self-adjoint and we can apply the
functional equation (2).

The eigenvalue equation Lf =0 is from the definition
(18) clearly of nonstandard form for the visible parameters
w, B and any anisotropic parameters hidden in the dyadic
e. Also, all geometrical parameters that may appear in the
functional relation e(p) are certainly nonlinear in the op-
erator L. The reason is mainly the dyadic function k2,
which contains all these parameters in a very complicated
fashion. In fact, (2) can be written in the form

f{w[eue2+uh2—Ve-k;2~e-Ve

—w(ux vh)-k?(ux vh)]
+2B(ux Vh)-k;?-ve} dS=0 (20)

from which no parameter can be explicitly solved unless €
is constant, which is not the case for a guiding structure.

Now we might try to define new parameters out of the
old ones to obtain a simpler functional relationship for
some of them. In fact, if instead of w and B we consider w?
and v, = w/B for new independent parameters, we see that
(20) is a linear equation in the parameter w? and can be
solved to give

f[Ve-M-e~Ve +(uX Vh)-M-p(uxX Vh)—2(u X Vh)-M-ve] dS
2=
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coefficients by differentiating (21) with respect to these
parameters and setting the derivatives equal to zero. How-
ever, we also might choose parameters in the functions f, g
in nonlinear fashion, in which case the stationary point of
(21) is found by observing values of the functional. Because
the field outside the fiber can best be approximated apply-
ing exponential functions with parameters in the exponent,
this latter method is very suitable to the open waveguide
problem. However, the number of parameters must not be
very great. On the other hand, only a modest computer or
programmable calculator is sufficient for the analysis.

The functional (21) was derived without weak guidance
assumption, whence its application is not limited to optical
fibers. Also, no assumption of perturbational anisotropy
was ever made. In this manner, (21) appears to be the most
general functional for transversely anisotropic waveguides,
and to the knowledge of the authors has not been presented
before.

In the literature, finite-element method (FEM) together
with the Rayleigh—Ritz optimization or some other discrete
technique is generally applied for dielectric waveguide
analysis, leading to a large-dimension set of linear equa-
tions [12], [15], [23], [26], [31]-[36]. Nonlinear optimizable
parameters in a variational method were recently applied
to circularly symmetric isotropic graded-index fibers in
scalar theory [37]. When comparing our method with FEM,
one further advantage is seen. It is widely observed, that
FEM and Rayleigh-Ritz give rise to unphysical solutions
called spurious modes, which seem to be inherent to the
approximate method [12]. Such modes do not appear when
applying direct observation of the functional (21) and trial

w

(21)

f(euez +,uh2) das

where we denote

v, ) “Low.
(22)

The dispersion relation will now be obtained in the form
w? = f(v,), from which it is not difficult to calculate the
result in the form w = f(B).

The approximative calculation of a point on the disper-
sion curve is started from a given value of v,, after which
the field functions e, & are approximated by suitable trial
functions f and g, respectively, containing a few free
parameters. The only condition for the choice of the func-
tions f, g is continuity. In fact, if there is a discontinuity in
f or g, the gradient operation gives us delta functions,
which appear squared in the functional and as such are
meaningless because the factor of a delta function must be
continuous. Since (21) is a stationary functional, we could
apply the well-known Rayleigh—Ritz method where these
parameters appear as linear coefficients in f and g, in
which case we obtain a set of linear equations for the

M= k2= (pe,~ v, ?) 1vv+(,uew -

functions which are known to be physical. To find out
whether the solution is spurious or not, with the FEM
method, a large number of points must be calculated,
which further widens the difference in computer capacity
required by these two methods.

1II. TESTING THE FUNCTIONAL: THE ISOTROPIC

STEP-INDEX FIBER

To obtain an idea of the accuracy of the functional (21),
we first apply it to the weakly guiding isotropic step-index
fiber, which has been thoroughly analyzed by many authors,
[38], [39], for example. For the general isotropic dielectric
waveguide, the functional takes on the simplified form

w2

- 2
f([.LG—Up_Z) 1(e(Ve)2+p.(Vh)2—U—u-VhXVe ds
»

/(ee2 +uh*)ds
(23)
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where €(p) is a scalar function. As trial functions we may
take any continuous functions e, A.

For a weakly guiding step-index fiber, (23) can be further
simplified. In fact, if the medium in the core is denoted by
1 and in the cladding by 2, we can define the parameters
‘normalized frequency’ V and ‘normalized propagation

factor’ b by
V=\ki-kia=VAk,a

Bz—kg Bz_k% 2
= a“.
K—k2 1

(24)

b= (25)

The quantity
ki — k% _&47¢

2
k €2

(26)

is much smaller than unity, typically less than 1 percent in
an optical fiber. The dielectric function can be written
concisely as

e(p) =€ (1+AP(p)) (27)

where P(p)=1 for p <a, and =0 for p > q, for a step-in-
dex guide. In the limit case A — 0, (23) can be seen to
reduce to

i frz):g(,/aw-‘/ﬁuxvh)zds

v (28)

[(eze? +un?) as
which does not explicitly depend on the parameter A. This
functional is very easy to apply. To approximate the basic
mode denoted by HE,; with cos¢ or sin¢ dependence we
may write
(29)
(30)

e(p,¢)=f(p)cos¢
h(p,¢)=Hf(p)sing

where H is a constant and f(p) is a function approximating 7

the true radial dependence of the fields.

The parameter H must be chosen so that (28) is sta-
tionary. Inserting (29) and (30) in (28) and setting the
derivative of V2 with respect to H equal to zero, gives us
an equation for H. It is easy to find out that for any
function f(p), the optimum value for H is either 1/7, or
—1/m, with 9, =yp /¢, . The choice H= —1/14, gives us
zero transverse fields on the axis corresponding to the
EH,, mode, which is not of our interest. Hence, we take for

the HE,; mode
H=1/1;. (31)

Substituting (29), (30), and (31) in (28) gives us the func-
tional ‘

2=f1,(:—)2_b(f’+%)zpdp

ffzpdp

where the integration extends from 0 to co.

14 (32)

739

As a check we first insert the exact fields in the func-
tional. The exact function is [40]

= Jy(up/a) /1),
0D _ Ko a) /o (), =

where J and K denote the Bessel and modified Hankel
functions, respectively, and

u=VW1-5
w="Wb. (34)

When (33), (34) are substituted in the functional (32), after
some operations on Bessel functions, the following equa-
tion is obtained:

Jo(“) - KO(W)
AORTAC) (33)

This is the well-known eigenvalue equation for the HE,;
mode [38], which is exact in the limit A = 0 for the weakly
guiding step-index fiber.

Next, we study some approximate trial functions. In the
core region, it is simple to choose a polynomial of odd
degree with undetermined coefficients. In the cladding, the
exponent function appears to be the most evident choice
with a parameter in the exponent and with a possible 1/ ‘/E

factor. Three different test functions were in fact at-

tempted, each continuous at the core-cladding- interface
p=a

=p/a, p<a
fl(p)=e><13[—¥(p—a)], p>a (36)
f(p)=(l—a)p/a+a(p/a)3, psa (37)
 =exp[-v(p-a)], >a
f(p)=(1_°‘)p/a+a(P/a)3’ p<a (38)
Y =Vapew[-v(p-a)l, p>a

The simplest function f; only involves one optimizable
parameter y, whereas f, and f; have two parameters a and
v. Because y appears in nonlinear fashion, the optimization
cannot be done analytically even in the simplest f; case.
Stationary values of the functional (32), however, are easy
to find with a simple computer or programmable calculator
for accurate approximations of the dispersion relation V =
V(b).

Results for functions f;, f,, and f; compared with those
for the exact function f, (number 4) are given in Figs. 1, 2,
and 3 and Table I. It is seen that above the value b =0.1
the accuracy is very good. For large values of b and V, f;
gives largest errors (Table I contains the error for the V
variable, the error for b is smaller), which is due to the fact
that the fields are concentrated in the core and the linear
approximation of f; is simply not good enough, whereas
the cubic functions of f, and f, are very good. For low
values of b, f, outweighs f, because the fields are now
mainly in the cladding, where f; is a better approximation.

For values of b close to zero the functional does not
work very well, because it has a singularity at » = 0, Fig. 4.
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Fig. 1. Dispersion curve for a cylindrically symmetric step-index fiber in
the weakly guiding limit A — 0. Numbers 1 to 3 refer to the test
functions f, defined in (36)—(38), and 4 to the exact function f, in (33).
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Fig. 2. Opﬁnﬁzed field functions, f,, i =1-3, and the exact function f,
(4) for the normalized frequency parameter V' =1430 in the weakly
guiding limit A — 0.

V = 4.339
b =0.80
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Same as in Fig. 2 for V' =4.339.

Fig. 3.
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TABLE I
VALUES OF THE NORMALIZED FREQUENCY PARAMETER V FOR
DIFFERENT VALUES OF THE NORMALIZED PROPAGATION
FACTOR PARAMETER b AND THE CORRESPONDING
ERROR FOR V' IN PERCENT

fy fa f3 fe G
b v % v % v % v v *
.90 7.1898 9.160 6.5896 0.048 6.5896 -0.023 6.5865 6.6310 0.676
.80 4.6291 6.690 4.3399 0.025 4.3400 0.021 4.3388 4.3865 1.100
.60 2.8203 3.877 2.7145 -0.022 2.7153 0.007 2.7151 2.7714 2.073
.40 1.9898 1.991 1.9466 -0.226 1.9505 -0.023 1.9510 2.0024 2.634
.20 1.4168 -0.891 1.4023 -1.908 1.4252 -0.317 1.4296 1.4430 0.939

fi, [, f3 refer to different approximating functions, f, is the exact
function, and G refers to Gloge’s approximative formula (40); A = 0.

0.0 1.0 1.8 2.0

Fig. 4. Approximations (1,2,3) to the exact (4) dispersion relation for
low parameter b, I values.

0.5

In fact, the relation h(¥V') has an essential singularity at
V =0, evident from the asymptotic evaluation of the cor-
rect solution at V' = 0 [41]

b~@/yW)exp(—(2/V)), vy=1781,--- (39)
because all derivatives of b with respect to ¥ can be seen to
vanish at the origin. Instead of making new asymptotic
approaches for the low b region, we exclude the range
b < 0.1 from our study.

Greater accuracies could have been obtained for more
complicated trial functions. However, one of the objectives
was to evaluate a method applicable for simple computing
devices, which limits the number of optimizable parame-
ters.

The column G in Table I refers to the analytic approxi-
mation by Gloge [39] for the dispersion curve

b()=1-{(@+v2)/(1+(4+ V) (40)

which gives a fair accuracy for values V' >1.
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Fig. 5. Same as in Fig. 1 for A = 0.004.

0 1 2 3 4 5 6
Fig. 6. Same as in Fig. 2 for A = 0.004.
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b =10.80
Taoer cenenn
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3
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0 1 2 3 4 5 6
Fig. 7. Same as in Fig. 3 for A = 0.004.
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TABLE II
VALUES OF THE NORMALIZED PARAMETER ¥ FOR DIFFERENT
VALUES OF THE NORMALIZED PROPAGATION PARAMETER b
AND THE CORRESPONDING ERROR IN PERCENT.
f1 f2’ f3 fe
b v % v % v % v
.90 7.1928  9.171 6.5917  0.047 6.5917  0.047 6.5886
.80 4.6318 6,701 4,3420 0.023 4.3420 0.025 4.3409
.60 2.8226  3.886 2.7164 -0,024 2.7172  0.005 2.7170
.40 1.9917  1.996 1.9483 -0.228 1.9522 -0.025 1.9527
.20 1.4185 -0.882 1.4038 -1.903 1.4266 -0.310 1.4311

Ji, fo, f refer to different approximating functions and f, to the solu-
tion of the exact eigenvalue equation (41). A = 0.004.

The test of the weakly guiding limit A — 0 of the cylin-
drically symmetric step-index fiber thus demonstrates the
applicability of the present variational method and the
asymptotic functional (28).

To test the more general functional (23), we take a
nonzero value for the dielectric step parameter A, namely
A =0.004. For the same test functions (29), (30) we ap-
proximate the parameter H by (31), which however, is not
a strict optimum in this case. Optimization of H can be
seen to lead to values differing from (31) very slightly and
the error in the functional comes mainly from the choice of
the function f(p) for small values of A. Taking the same
test functions f; as in (36)~(38), we have the approxima-
tions depicted in Figs. 5, 6, and 7, and Table II. Number 4
denotes the exact values obtainable from the more general
eigenvalue equation [39]

:Z((l;)) -1

_é) Ky(w) (41)

2] wK,(w)

which is not exact, but more accurate than (35) when A is
small.

It is seen that the accuracy is not much different from
that of the previous example where A = 0.

IV. APPLICATION TO ANISOTROPIC FIBERS

To apply the functional (21) to optical fibers with trans-
verse anisotropy, we consider two examples of weakly
guiding step-index fibers with either anisotropic core or
anisotropic core and cladding. These examples are simple
first steps towards an analysis of more realistic fibers
which are produced by the present technology. The func-
tional (21) is able to handle all kinds of transverse
anisotropies, not necessarily constant, and arbitrary inho-
mogeneities. The problem for the present is to obtain a
reliable expression for the relation between the applied
stress and the resulting dielectric anisotropy of the fiber
material. It has been found that the anisotropy not only
depends on the stress itself, but also on the method of
preparation of the glass and on its thermal history [42],
which makes the relation very complicated to express.
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A. Circular Step-Index Fiber with Anisotropic Core and
Isotropic Cladding

The dielectric dyadic is now assumed to be of the form
e=6[(E+AP(p)k)+(1-AP(p))uu]  (42)

where P is the same function as in (27) and « is the
constant dyadic

(43)
A is a parameter which is assumed to be small. Thus the
medium is almost transversely isotropic with the dielectric
factor €,, which is that of the medium in the cladding, but
the core has a slightly different dyadic dielectric factor. We
define two parameters V2 and b in terms of A as follows:

Vi=A(kya) (44)
C b= (B2=k2)a¥/ V2 (45)

These definitions coincide with (24), (25), if the parameter
k, does not show because it is not unique here. The dyadic
M in (22) can now be evaluated. In fact, we may write

(46)

k=Avv+ A, ww.

k2= (kP —bE)V*/a?

whence
M=w%’D/V?, D=(xkP—bE) ‘.  (47)
Substituting (47) and (42) in (21), eliminating w and letting

A — 0, leaves us with the following simple functional for
V2

VZ

f(\/aVe ~wux Vh)*D'(\/aVe —pux Vh)azdS
[[(ese) + (Juny’] as

(48)
The functional (28) is obviously the isotropic special case
of the functional (48). The normalized propagation param-
eter b and the anisotropy parameters 4,, 4,, are contained
in the symmetric dyadic D, which can be written more
explicitly as

—_w ., ww

A P-b A P—b

_ vo/(4,—-b)+ww/(4,-b),
- E/b,

D= (xkP—bE)""

p<a

p>a. (49)

Now we are ready to apply (48) by inserting suitable
trial functions and finding the stationary points. First we
try the functions (29), (30), and put H=1/7,. The angle ¢
is measured from the v-direction. We have

\/aVe—\/ﬁuXVh=‘/€;(%+f’)v

which inserted in (48) shows us that in this approximation,
the functional is the same as that for the isotropic fiber
(32), with 4, P(p) instead of P(p). This can also be inter-
preted in such a way that if the dispersion relation for the

(50)
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b by (V)= AD(AN,)

e

Q <b(v)

v v
=V//R,

Y v

Fig. 8. Construction of the dispersion curve for the slightly anisotropic
weakly guiding fiber in terms of the dispersion curve for the isotropic
fiber. Every point P of the isotropic curve is mapped onto a point @ of
the anisotropic curve.

isotropic step-index fiber is ¥2 = f(b), in this approxima-
tion we have for the anisotropic fiber ‘
5, 1
V= —f(b/A,). (s1)
AU
The transformation (51) has the effect of shifting the
isotropic dispersion curve as shown in Fig, 8.

Rotating the test function in the v-, w-plane by 90° gives
us (49) with w instead of v and (51), with 4, instead of 4,.
Thus the dispersion relations are different for the two
polarizations. It is noted that there was no assumption of
smaliness of the anisotropy, but the error involved in the
isotropic test function applied here is probably larger for
greater anisotropy.

The birefringence concept was originally defined for two
modes with dispersion characteristics close to one another.
The question was to separate two degenerate modes in a
circularly symmetric isotropic fiber by means of a per-
turbation of some kind. The concept is not very useful for
modes whose dispersion characteristics differ very much
from each other. Thus for a small anisotropy, the bire-
fringence can be well calculated using the isotropic test
functions. In the general case, we can write for the two
polarizations

Ba—B,a b, +1/A —\b,+1/A A
B=2 =2 ~—(b,—b,).
B.a+B,a b, +1/A +b,+1/A 2 (5= 5)

(52)
The last expression is valid for A — 0, if b,, b, are not very
small. If there only is anisotropy in the o-direction, b, = b
the isotropic value, we see that the birefringence is propor-
tional to the separation in the dispersion curves of the
anisotropic and isotropic cases. Moreover, we see that the
birefringence is proportional to A and not A, as would be
the case for an isotropic perturbed guide. This fact was
carlier demonstrated by many authors applying perturba-
tional analysis and perturbational coupled-wave analysis,
[6], [7]. For a perturbational anisotropy, (52) can be written
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Fig. 9. Normalized birefringence 2B/Aq for the step-index fiber with
anisotropic core and isotropic cladding in the limit of weak guidance
and perturbational anisotropy.

ford=1+¢
(53)

where b’ denotes the derivative of b with respect to V.
Applying (40), the function of ¥ in brackets can be sketched
as in Fig. 9. It is seen that the birefringence increases
monotonically with increasing values of the parameter V.

For large values of V, B can be approximated by Ag /2.
As an example, for a practical value of the birefringence
B=10"* at V=2.4, we have from Fig. 9 Ag=2.3-10"%,
whence for A = 0.01 we must have g = 0.023.

Bz-Azﬁ(b(V)+%Vb’(V))

B. Circular Step-Index Fiber with Anisotropic Core and
Cladding

As a second example we consider a step-index aniso-
tropic fiber with the dyadic parameter

e=¢,(1+AP(p))(x+ uu) (54)

and the same definitions for the symbols as in the previous
example. This time, the fiber is fabricated on an aniso-
tropic cladding material, and the anisotropy is the same in
the core.

Unlike in the previous example, the functional cannot be
simplified in a form corresponding to (48). Hence, we must
work with the general functional (21). Writing

«, =€ (1+AP(p))4,
€= €2(1+ AP(p))Aw

(55)
(56)

we substitute (22) in (21). Applying (29), (30), (31), and
(38) for the trial function, optimizing the parameters a and
v, we have the dispersion relations shown in Figs. 10
and 11. It is seen that the effect of the parameter A is much
less pronounced than in the case A. This is easily under-
stood from the difference of the definitions (42) and (54).
In fact, taking 4, =1 and 4, =1+ ¢, it is seen that in (42)
the anisotropic parameter g appears in the term gAPe,,,,
whereas in (54) the corresponding term is g(1+ AP)e,vv,
which does not vanish for A = 0. This means that the term
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Fig. 10. Dependence of the dispersion relation on the dielectric parame-

ter A for the anisotropic parameter 4 = 0.9998.
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Fig. 11. Same as in Fig. 10 for 4 =1.0002.

gA is replaced by g in many contexts for weakly guiding
fibers, and thus A has a minor effect on the propagation
properties.

The same can also be seen from an asymptotic consider-
ation of the birefringence parameter B, (52). If we ap-
proximate for low anisotropy the ratio of the propagation
factors B8, /B,, by 1+ g ,which corresponds to the ratio for
plane waves polarized in the w- and v-directions, we have

B=gq/2 (57)

which does not depend on the parameter A.

Calculations from the functional for low values of A and
g (around 1073 ~10"%) show that B defined by (57) is a
valid approximation for values of ¥ between 1 and 6 with
less than a 1-percent error.

V. CoNcLUSION

Applying the theory of nonstandard eigenvalue problems
and variational principles, a stationary functional for di-
electric open waveguides with transverse anisotropic dielec-
tric tensor was constructed. The functional was tested for
isotropic well-known step-index circular fibers and was
seen to give results for two-parameter test functions with
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less than 1 percent of error in the interesting range of
frequencies. Further, the functional was applied for two
types of anisotropic optical fibers: one with anisotropic
core and other with a both core and cladding anisotropic.
For low anisotropy and weak guidance, approximate ex-
pressions for the birefringence of the two HE,; modes were
seen to result in analytic form. The method seems applica-
ble to more complicated problems with more parameters in
the test functions. In the present form, however, a com-
puter of very modest capacity or even a programmable
calculator is sufficient.
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An Implantable Electric-Field Probéof
Submillimeter Dimensions

T. E. BATCHMAN, SENIOR MEMBER, IEEE, AND GEORGE GIMPELSON, MEMﬁER, IEEE

Abstract —Many areas of biological research await the development of
practical electric (E)-field probes with submillimeter dimensions for in situ
measurements of RF . electromagnetic fields. This paper reports on. the
design, fabrication, and testing of such a probe. The probe consists of a
0.6-mm dipole antenna, a zero-bias Schottky barrier diode and a unique
highly resistive -output lead structure. Experimental results indicate the
probe does not perturb the field under investigation and is linear over a
range of field strengths from less than 60 to over 1200 V/m. The probe has
been designed so as to be independent of the media in which measurements
are being made.

1. INTRODUCTION

N THE MID-1970’s a series of articles appeared in the

New Yorker, written by Paul Brodeur [1], which brought
to the public’s attention the present controversy over the
question of what constitutes a safe level of electromagnetic
radiation. The debate now centers around the criteria used
by the U.S. to establish an exposure limit. Initially, it was
assumed that only the thermal effects were hazardous, and
so all that needed to be considered was the rate at which
the human body dissipated the thermal energy. »

However, in the last 15 years an impressive amount of
evidence has been accumulated which demonstrates the
existence of “nonthermal” effects [2]~[5]. In the late 1960’s,
Dr. W. R. Adey (then with the Brain Research Institute of
UCLA) and A. H. Frey of Randomline, Inc., advanced
theories on the biological effects of very low intensity
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microwaves, and collected experimental evidence for theo-
retical verification [6]. In the early 1970°s Dr. K. V.
Sudakov at P. K. Anokhin: Institute' in Moscow induced -
profound EEG and behavioral changes in mice using ELF

- modulated microwaves. Dr. R. Carpenter of the Bureau of

Radiological Health is presently attempting to determine if
there is a correlation between the formation of cateracts,
and microwave exposure. This concern over the effects of
low-level non-ionizing radiation has led to a demand for
more accurate methods of measuring electromagnetic flCldS
within biological media.

- Currently, there are three methods avaulable for de-
termining the strength of internal electromagnetic fields:
the electric (E)-field probe, thermography, and the temper-
ature probe. A comparison of these three internal dosimet-
ric techniques has been made by H. Bassen et al., [7] and it
was noted that the E-field probe measurement is the only
technique which directly monitors the electric field. Conse-
quently, it neither depends on observed secondary effects
nor assumes that all the 1ntema11y deposited energy is
transformed to heat. Both the temperature probe and ther-
mography require a knowledge of the mass density and
specific heat of the investigated region to’ determine the
specific absorption rate.. Furthermore, the “sensitivity. of
these two methods is not great enough to allow for dosime-
try at incident power densities of less than 10 mW /cm?, as
is often needed for low-intensity microwave research. The
E-field probe does not suffer from these limitations, and
has the advantage of continuous line scan capability and
media independence.
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