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Transversely Anisotropic Optical Fibers:
Variational Analysis of a Nonstandard

Eigenproblem

ISMO V. LINDELL, SENIOR MEMBER, IEEE MARKKU I. OKSANEN, STUDENT MEMBER, IEEE

Afssowct —The variational principle for nonstandard eigenvahre prob-

lems, recently reported by one of the authors, is applied for the study of

guided-wave propagation in an anisotropic dielectric waveguide. A sta-

tionary functional is derived for the general dielectric wavegnide with

transverse anisotropy. The functional is tested for the well-known case of

an isotropic step-index single-mode fiber. It is seen that for simple triaf

functions with only two parameters, a good accuracy is obtained. For two

types of transversely anisotropic step-index fibers, relations between the

propagation factor, anisotropy parameter, dielectric parameter, and

frequency are calculated. The functional does not assnme weak guidance

condition nor perturbational anisotropy and, hence, is afso applicable for

other rfielectic waveguides. In this application, only a modest computer or

a programmable calculator is needed. Moreover, the spurious modes caus-

ing confusion in the finite-element method of calculation do not appear

with the present method.

I. INTRODUCTION

T HE OPTICAL FIBER has become one of the most

studied subjects in electromagnetic because of its

phenomenological property of wave guidance with ex-

tremely low losses. In recent years, the single-mode fiber

has been favored because of its small dispersion, but the

problem has been the degeneracy in the polarization of the

basic HE1l mode in fibers with circular symmetry. Because

of this, the small imperfections in the ambient conditions

of the fiber have the effect of making the polarization of
the mode a statistically varying quantity after a few meters

of propagation in the fiber [1]–[5], a fact that has been

counteracted by producing noncircular or transversely an-

isotropic fibers. By analysis and actual fabrication, it has

been shown that the noncircularity in most cases is insuffi-

cient to produce the required separation of the polarization

degenerate mode propagation coefficients, whereas by in-
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troducing mechanical stress in the fiber, an anisotropy can

be obtained high enough to produce a separation sufficient

in practice [3], [6]–[17]. This motivates an analysis of the

dielectric waveguide with transverse anisotropy, because

although the longitudinal anisotropy has been well studied

[18] -[21], there only exist a few attempts with more general

anisotropy: mainly perturbational or dealing with special

structures [22]–[26].

The analysis applies the variational principle in the

general eigenvalue problem which was called nonstandard

in a recent study by one of the authors [27]. Here, the

problem can be expressed in abstract operator form as

L(A)f=o (1)

where A is the eigenvalue parameter of the problem. If

L(A) is a linear function on A, (1) is a standard eigenvalue

problem, otherwise it is called nonstandard. The parameter

A may be chosen at will among all the physical and

geometrical parameters involved in the problem. In prob-

lems dealing with closed waveguides, there is an additional

equation corresponding to boundary conditions, which,

however, is absent in our present problem. The method is

based on the following functional equation obtained
through definition of an inner product (.,.):

(f, L(A) f)=o. (2)

If the operator L is self adjoint with respect to this inner

product, it was shown that (2) possesses stationary roots

for the parameter A [27]. If we can solve (2) for A, a

stationary functional for A is obtained, which can be ap-

plied for an approximative solution of the problem (1) in a

well-known manner [28]. In more complicated problems,

however, no explicit solution of (2) for the parameter A can

be found. In this case, we may try to take another parame-

ter of the problem as our eigenvalue parameter A. If none
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of the parameters is solvable from (2) in explicit form, we

can define new parameters out of the old ones and try to

solve (2) for one of them. It is self-evident that this also

leads to a stationary functional, because, if in the original

problem (1) the parameters are redefined, a functional

equation (2) with a new set of parameters arises. Hence, the

change of parameters can also be made in (2).

In Section II, the nonstandard equation (1) is derived for

longitudinal field components, leading to a self-adjoint

problem, which is of the nonstandard form in all parame-

ters. By defining new independent parameters, an explicit

stationary functional can be written for the parameter ~z.

In Section III, the functional is tested for the step-index

isotropic fiber. It is seen that for a two-parameter test

function, a good accuracy is obtained for the dispersion

relation. In Section IV, the functional is applied to two

types of transversely anisotropic fibers: one with an aniso-

tropic core and an isotropic cladding and the other with

both the core and cladding anisotropic, and relations be-

tween different parameters are calculated. Because the

method is very general, and also boundary conditions

could be introduced as in a previous study [29] for iso-

tropic waveguides, the present procedure can be applied to

other waveguide strictures with anisotropic media.

II. THEORY

We consider a dielectric guiding structure with dyadic

permittivity inhomogeneous in the x - y plane. The e dy-

adic is supposed to possess the guiding direction unit

vector u ( = u=) as its eigenvector so that we have

C(p)” u=tu(p)u. (3)

Moreover, c is assumed to be a symmetric dyadic, as is the

case for crystal media. Henceforth, we write c( p ) + c~( p)uu

instead of C(p), or boldface c denotes the two-dimensional

part of the permittivity tensor.

Analogously with [29], we derive equations for the longi-

tudinal fields. In fact, writing the guided fields as E(r)=

(Erie) exp(- j~z) and H(r)= (hard)

exp ( – j~z ), from Maxwell’s equations we have

V.(u Xe)–j@z=O ,(4)

V“(u Xh)+jucUe=O (5)

uXVe+j~u Xe–jtiph=O (6)

uXVh+j~u Xfi+jw6. e=O. (7)
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where E is the two-dimensional unit dyadic E = I – UU.

The dyadic k: is two-dimensional and beeause det(k~) = O,

it does not possess a three-dimensional inverse. It does,

however, possess a two-dimensional inverse, which can be

uniquely written as [30] ,,

k~2 = (k~~~~)/spm(k~). (11)

The double-cross product of two dyadics is defined

through (ab)X(cd) = (a X c)(b X d) and spm( ) is the

two-dimensional determinant function (’sum of principal

minors’ of the three-dimensional dyadic) defined by spm A

= A XA: 1/2. That (11) is really valid can be checked by

writing k: in component form. Because a symmetric dyadic

always possesses three orthogonal eigenvectors, we can

write the two-dimensional dyadic c as

C=cvf?v+cwww (12)

with u, q w an orthonormal system of unit vectors. Insert-

ing (12) in (10) we have

k;= k:ow + k:www with k:i = to2pci – /12,

i= U,w. (13)

Hence, (11) gives us

k-z = k;vzt.x)+ k;:ww.
c (14)

To obtain the equations for the longitudinal fields we

substitute (8), (9) in (4), (5)

V.((k:2ilzm). (~z4X Ve+@pVh))+q4h=0 (15)

v-(k:2. (at. ve–/3ux vh))+@cUe=O. (16)

Equations (15) and (16) constitute a pair of equations

which are going to apply in our analysis. The operator L

operates on the pair of scalar functions (e, h), which we

denote by ~ in our abstract linear space. Defining the inner

product (.,.) by

(17)

where the integration extends over the whole x – y plane,

we have to define” the explicit form of the operator L in

such a way that it is self-adjoint with respect to the inner

product (17). As boundary conditions, we take exponential

decay of the fields e and ~“ as p ~ co, because only such

guided solutions are of interest to us for the moment. It

can be readily demonstrated that the definition

Lf =

(

aV. (k~2. c.ve)+ticUe -/?v. (k;2. uxvfi)

~v”((kiz~~~)” (uxve))+opv. ((k:z~uu).vh)+aph )

(18)

From these equations, the transversal field vectors e, h can leads to a self-adjoint operator. In fact, we can evaluate

be eliminated. Equations (6) and (7), then, give us

(fl, Lf2)=~(- @ve1”(k;2”c)”ve2
e= – jk;2. (/3ve-@pu X vh) (8)

h= jux’k;z. (–tic. ve+~uxvh) (9) + @: Ue1e2– tipvhl. (k:2Xuu).vh2

if we define -t qth1h2 –/3vh2. u X(k;2).vel

k:= Uzpc – j32E (lo) –flvhl. u xk;2.ve2) dS (19)
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when we note that the divergence terms, reduced to line

integrals at infinity, does not contribute because of the

assumed exponential decay of the fields.
To be self-adjoint, the operator L in (19) should give an

expression symmetric in 1 and 2. If c is a symmetric dyadic,

as presumed, we can readily check that every term in (19)

is symmetric except for the last two, which, however, form

a symmetric pair. So, L is self-adjoint and we can apply the

functional equation (2).

The eigenvalue equation Lf = O is from the definition

(18) clearly of nonstandard form for the visible parameters

u, ~ and any anisotropic parameters hidden in the dyadic

c. Also, all geometrical parameters that may appear in the

functional relation c(p) are certainly nonlinear in the op-

erator L. The reason is mainly the dyadic function k; 2,

which contains all these parameters in a very complicated

fashion. In fact, (2) can be written in the form

j{ [u cUe2+ph2– ve. k;2. c.ve

–p(u X vh)-k;2. (ux Vh)]

+2/3(ux viz).kj2.ve} dS=O (20)

from which no parameter can be explicitly solved unless c

is constant, which is not the case for a guiding structure.

Now we might try to define new parameters out of the

old ones to obtain a simpler functional relationship for

some of them. In fact, if instead of o and ~ we consider a2

and VP= u/~ for new independent parameters, we see that

(20) IS a linear equation in the parameter C02and can be

solved to give

coefficients by differentiating (21) with respect to these

parameters and setting the derivatives equal to zero. How-

ever, we also might choose parameters in the functions f, g
in nonlinear fashion, in which case the stationary point of

(21) is found by observing values of the functional. Because

the field outside the fiber can best be approximated apply-

ing exponential functions with parameters in the exponent,

this latter method is very suitable to the open waveguide

problem. However, the number of parameters must not be

very great. On the other hand, only a modest computer or

programmable calculator is sufficient for the analysis.

The functional (21) was derived without weak guidance

assumption, whence its application is not limited to optical

fibers. Also, no assumption of perturbational anisotropy

was ever made. In this manner, (21) appears to be the most

general functional for transversely anisotropic waveguides,

and to the knowledge of the authors has not been presented

before.

In the literature, finite-element method (FEM) together

with the Rayleigh–Ritz optimization or some other discrete

technique is generally applied for dielectric waveguide

analysis, leading to a large-dimension set of linear equa-

tions [12], [15], [23], [26], [31]–[36]. Nonlinear optimizable

parameters in a variational method were recently applied

‘to circularly symmetric isotropic graded-index fibers in

scalar theory [37]. When comparing our method with FEM,

one further advantage is seen. It is widely observed, that

FEM and Rayleigh–Ritz give rise to unphysical solutions

called spurious modes, which seem to be inherent to the

approximate method [12]. Such modes do not appear when

applying direct observation of the functional (21) and trial

j[ Ve. A4”t. Ve+(u X Vh)”A4. p(u XVh)-2(u XVh).iW. Ve] dS
~z =

J(

(21)

~We2+ph2) dS

where we denote

(M=u2k;2= ~co– VP-2 )-1 W+(P6 -D-2)-’w P Ww.

(22)

The dispersion relation will now be obtained in the form

tiz = f (up), from which it is not difficult to calculate the

result in the form OJ= ~( ~).

The approximative calculation of a point on the disper-

sion curve is started from a given value of up, after which

the field functions e, h are approximated by suitable trial

functions f and g, respectively, containing a few free

parameters. The only condition for the choice of the func-

tions f, g is continuity. In fact, if there is a discontinuity in

~ or g, the gradient operation gives us delta functions,

which appear squared in the functional and as such are

meaningless because the factor of a delta function must be

continuous. Since (21) is a stationary functional, we could

apply the well-known Rayleigh– Ritz method where these

parameters appear as linear coefficients in f and g, in

which case we obtain a set of linear equations for the

functions which are known to be physical. To find out

whether the solution is spurious or not, with the FEM

method, a large number of points must be calculated,

which further widens the difference in computer capacity

required by these two methods.

111. TESTING THE FUNCTIONAL: THE ISOTROPIC

STEP-INDEX FIBER

To obtain an idea of the accuracy of the functional (21),

we first apply it to the weakly guiding isotropic step-index

fiber, which has been thoroughly analyzed by many authors,

[38], [39], for example. For the general isotropic dielectric

waveguide, the functional takes on the simplified form

(JJ2

/( pc – VP-2 )-’(~(Ve)2+p(Vh)2 -~u.vh Xve)dS
D

r
—

/( te2 +ph2) dS

(23)
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where c(p) is a scalar function. As trial functions we may

take any continuous functions e, h.

For a weakly guiding step-index fiber, (23) can be further

simplified. In fact, if the medium in the core is denoted by

1 and in the cladding by 2, we can define the parameters

‘normalized frequency’ V and ‘normalized propagation

factor’ b by

V= ~~a =~k2a (24)

The quantity

(25)

(26)

is much smaller than unity, typically less than 1 percent in

an optical fiber. The dielectric function can be written

concisely as

C(p) =C2(l+AP(p)) (27)

where P(p) = 1 for p < a, and = O for p > a, for a step-in-

dex guide. In the limit case A -+ O, (23) can be seen to

reduce to

which does not explicitly depend on the parameter A, This

functional is very easy to apply. To approximate the basic

mode denoted by HEII with cos @ or sin ~ dependence we

may write

e(p, +)= f(p)cos$ (29)

h(p, +)=~f(p)sinc$ (30)

where His a constant and ~( p ) is a function approximating

the true radial dependence of the fields.

The parameter H must be chosen so that (28) is sta-

tionary. Inserting (29) and (30) in (28) and setting the

derivative of V2 with respect to H equal to zero, gives us

an equation for H. It is easy to find out that for any

function ~(p), the optimum value for H is either 1/ q2 or

– l/q2 with Tz = m. The choice H = – l/q2 gives us

zero transverse fields on the axis corresponding to the

EHII mode, which is not of our interest. Hence, we take for

the HEII mode

H=l/q2. (31)

Substituting (29), (30), and (31) in (28) gives us the func-

tional

/
a’

V2= P(p)–b ()
f’+: 2pdp

(32)

jf 2p dp

where the integration extends from O to co.

As a check we first insert the exact fields in the func-

tional. The exact function is [40]

= .ll(z.4p/a)/J1(u),

fe(P)
=K1(wp/a)/K1(w),

::;: (33)

where J and K denote the Bessel and modified Hankel

functions, respectively, and

U=vm

W= VJ5. (34)

When (33), (34) are substituted in the functional (32), after

some operations on Bessel functions, the following equa-

tion is obtained:

Jo(u) Ko(w)— .
UJl(u) WK1(W) “

(35)

This is the well-known eigenvalue equation for the HEII

mode [38], which is exact in the limit A = O for the weakly

guiding step-index fiber.

Next, we study some approximate trial functions. In the

core region, it is simple to choose a polynomial of odd

degree with undetermined coefficients. In the cladding, the

exponent function appears to be the most evident choice

with a parameter in the exponent and with a possible l/&

factor. Three different test functions were in fact at-

tempted, each continuous at the core-cladding- interface
p=a

f,(P)

= p/a,

=exp[–y(p– a)],

f2(P)
= (1- a)p/a+ a(p/a)3,

;;: (37)
=exp[–y(p– a)],

f3(P)
= (1- a)p/a+ a(p/a)3,

;:: (38)
=~exp[-y(p -a)], .

The simplest function ~1 only involves one optimizable

parameter y, whereas f2 and f3 have two parameters a and

y. Because y appears in nonlinear fashion, the optimization

cannot be done analytically even in the simplest fl case.

Stationary values of the functional (32), however, are easy

to find with a simple computer or programmable calculator

for accurate approximations of the dispersion relation V=

V(b).

Results for functions fl, f2, and ~3 compared with those

for the exact function f, (number 4) are given in Figs. 1, 2,

and 3 and Table I. It is seen that above the value b = 0.1

the accuracy is very good. For large values of b and V, fl

gives largest errors (Table I contains the error for the V

variable, the error for b is smaller), which is due to the fact

that the fields are concentrated in the core and the linear

approximation of fl is simply not good enough, whereas

the cubic functions of f2 and f3 are very good. For low

values of b, f~ outweighs f2 because the fields are now

mainly in the cladding, where f3 is a better approximation.

For values of b close to zero the functional does not

work very well, because it has a singularity at b = O, Fig. 4.
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TABLE I
VALUES OF THE NORMALIZED FREQUENCY PARAMETER V FOR

DIFFERENT VALUES OF THE NORMALIZED PROPAGATION

FACTOR PARAMETER b AND THE CORRESPONDING

ERROR FOR V IN PERCENT

.90 7.1898 9.160 6.5896 0.048 6.5896 -0.023 6.5865 6.6310 0.676

.80 4.6291 6.690 4.3399 0.025 4.3400 0.021 4.3388 4.3865 1.100

.60 2.8203 3.877 2.7145 -0.022 2.7153 0.007 2.7151 2.7714 2.073

.40 1.9898 1.991 1.9466 -0.226 1.9505-0.023 1.9510 2.0024 2.634

.20 1.4168 -0.891 1.4023 -1.908 1.4252 -0.317 1.4296 1.4430 0.939

~1,~2,~3 refer to different approximating functions)~= is the exact
function, and G refers to Gloge’s approximative formula (40); A = O.
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Fig. 4. Approximations (1,2,3) to the exact (4) dispersion relation for
low parameter b, V values.

Fig. 2. Optimized field functions, ~,, i=l-3, and the exact function~,

(4) for the normalized frequency parameter P’=1.430 in the weakly In fact, the relation b(V) has an essential singularity at
guiding limit A + O. V=O, evident from the asymptotic evaluation of the cor-

rect solution at V= O[41]
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Fig. 3. Same asin Fig.2for V=4.339.

b - (2/y V)2exp(- (2/V) 2), y=l.781, .o. (39)

because all derivatives of b with respect to P’ can be seen to

vanish at the origin. Instead of making new asymptotic

approaches for the low b region, we exclude the range

b <0.1 from our study.

Greater accuracies could have been obtained for more

complicated trial functions. However, one of the objectives

was to evaluate a method applicable for simple computing

devices, which limits the number of optimizable parame-

ters.
The column G in Table I refers to the analytic approxi-

mation by Gloge [39] for the dispersion curve

b(V)= l-[(l+ti)/(l +(4+ V4)’i4)}2 (40)

which gives a fair accuracy for values V >1.
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Fig. 7. Same as in Fig. 3 for A = 0.004.

TABLE II

VALUES OF THE NORMALIZED PARAMETER V FOR DIFFERSNT

VALUES OF THE NORMALIZED PROPAGATION PARAMETER b
AND THE CORRESPONDING ERROR IN PERCENT.

fl fz f-j ‘e

b v % v % v % v

.90 7.1928 9.171 6.5917 0.047 6.5917 0.047 6.5886

.80 4.6318 6.701 4.3420 0.023 4.3420 0.025 4.3409

.60 2.8226 3.886 2.7164 -0.024 2.7172 0.005 2.7170

.40 1.9917 1.996 1.9483 -0.228 1.9522 -0.025 1.9527

.20 1.4185 -0.882 1.4038 -1.903 1.4266 -0.310 1.4311

~1, $2, ~q refer to different approximating functions ~d ~, to he SOIU-
tion of the exact eigenvalue equation (41). A = 0.004.

The test of the weakly guiding limit A + O of the cylin-

drically symmetric step-index fiber thus demonstrates the

applicability of the present variational method and the

asymptotic functional (28).

To test the more general functional (23), we take a

nonzero value for the dielectric step parameter A, namely

A = 0.004. For the same test functions (29), (30) we ap-

proximate the parameter H by (31), which however, is not

a strict optimum in this case. Optimization of H can be

seen to lead to values differing from (31) very slightly and

the error in the functional comes mainly from the choice of

the function ~(p) for small values of A. Taking the same

test functions L as in (36)–(38), we have the approxima-

tions depicted in Figs. 5, 6, and 7, and Table II. Number 4

denotes the exact values obtainable from the more general

eigenvalue equation [39]

Jo(u) # Ko(w)— .
UJl(u) () 2 WK1(W)

(41)

which is not exact, but more accurate than (35) when A is

small.

It is seen that the accuracy is not much different from

that of the previous example where A = O.

IV. APPLICATION TO ANISOTROPIC FIBERS

To apply the functional (21) to optical fibers with trans-

verse anisotropy, we consider two examples of weakly

guiding step-index fibers with either anisotropic core or

anisotropic core and cladding. These examples are simple

first steps towards an analysis of more realistic fibers

which are produced by the present technology. The func-

tional (21) is able to handle all kinds of transverse

anisotropies, not necessarily constant, and arbitrary inho-

mogeneities. The problem for the present is to obtain a

reliable expression for the relation between the applied

stress and the resulting dielectric anisotropy of the fiber

material. It has been found that the anisotropy not only

depends on the stress itself, but also on the method of

preparation of the glass and on its thermal history [42],

which makes the relation very complicated to express.
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A. Circular Step-Index Fiber with Anisotropie Core and

Isotropic Cladding

The dielectric dyadic is now assumed to be of the form

C.= C2[(17+ AP(p)K)+ (l- AP(p))UU] (42)

where P is the. same function as in (27) and IC is the

constant dyadic

K = AUVV+ A,VWW. (43)

A is a parameter which is assumed to be small. Thus the

medium is almost transversely isotropic with the dielectric

factor Cz, which is that of the medium in the cladding, but

the core has a slightly different dyadic dielectric factor. We

define two parameters V2 and b in terms of A as follows:

V2=A(k2a)2 (44)

b=(~2–k~)a2/V2. (45)

These definitions coincide with (24), (25), if the parameter

kl does not show because it is not unique here. The dyadic

M in (22) can now be evaluated. In fact, we may write

kg= (KP – bE)V2/a2 (46)

whence

ill = u2a2D/V2, D=(icP-bE)-l. (47)

Substituting (47) and (42) in (21), eliminating u and letting

A ~ O, leaves us with the following simple functional for

V2:

V2

J(J- r[2ve– puxvh)-D. (&ve–fiu Xvh)a2dS
——

j[(&e~+(fih)2] dS

(48)

The functional (28) is obviously the isotropic special case

of the functional (48). The normalized propagation param-

eter b and the anisotrop y parameters AU, A. are contained

in the symmetric dyadic D, which can be written more

explicitly as

D=(KP–bE)-l= W
Ww

AUP–b+AWP–g

_ vv/(AU- b)+ww/(Aw-b), p<a
—

- E/b, p>a. (49)

Now we are ready to apply (48) by inserting suitable

trial functions and finding the stationary points. First we

try the functions (29), (30), and put H = l/rf2. The angle@

is measured from the v-direction. We have

()
&ve-fiu Xvh=& ‘+f’ v (50)

P

which inserted in (48) shows us that in this approximation,

the functional is the same as that for the isotropic fiber

(32), with AUP(P) instead of P(p). This can also be inter-

preted in such a way that if the dispersion relation for the

b

I -’(”J
Q

Avb(V) -

b(v)

/“ v

Vv=vlq

Fig. 8. Construction of the dispersion curve for the slightly anisotropic
weakly guiding fiber in terms of the dispersion curve for the isotropic

fiber. Every point I’ of the isotropic curve is mapped onto a point Q of

the anisotropic curve.

isotropic step-index fiber is V2 = f(b), in

tion we have for the anisotropic fiber

V*= ~f(b/AV).
u

The transformation (51) has the effect

isotropic dispersion curve as shown in Fig.

—

this approxima-

(51)

of shifting the

8.

Rotating the test function in the v-, w-planeby900 gives

us (49) with w instead of o and (51), with A ~ instead of AU.

Thus the dispersion relations are different for the two

polarizations. It is noted that there was no assumption of

smallness of the anisotropy, but the error involved in the

isotropic test function applied here is probably larger for

greater anisotropy.

The birefringence concept was originally defined for two

modes with dispersion characteristics close to one another.

The question was to separate two degenerate modes in a

circularly symmetric isotropic fiber by means of a per-

turbation of some kind. The concept is not very useful for

modes whose dispersion characteristics differ very much

from each other. Thus for a small anisotropy, the bire-

fringence can be well calculated using the isotropic test

functions. In the general case, we can write for the two

polarizations

(52)

The last expression is valid for A -O, if bo, bw are not very

small. If there only is anisotropy in the v-direction, bw = b

the isotropic value, we see that the birefringence is propor-

tional to the separation in the dispersion curves of the

anisotropic and isotropic cases. Moreover, we see that the

birefringence is proportional to A and not A2, as would be

the case for an isotropic perturbed guide. This fact was

earlier demonstrated by many authors applying perturba-

tional analysis and perturbational coupled-wave analysis,

[6], [7]. For a perturbational anisotropy, (52) can be written
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0.2 1/
0.0

1 v
I , , 1 i I , i 1

0 2 4 6

Fig. 9. Normalized birefringence 2 B/Aq for the step-index fiber with

anisotropic core and isotropic cladding in the limit of weak guidance

and perturbational anisotropy.

for A=l+q

+(b(v)++vb’(n) (53)

where b’ denotes the derivative of b with respect to V.

Applying (40), the function of Vin brackets can be sketched

as in Fig. 9. It is smn that the birefnngence increases

monotonically with increasing values of the parameter V.

For large values of V, B can be approximated by Aq/2.

As an example, for a practical value of the birefringence

B =10-4 at V= 2.4, we have from Fig. 9 Aq = 2.3 c10-4,

whence for A = 0.01 we must have q = 0.023.

B. Circular S~ep-Index Fiber with Anisotropic Core and

Cladding

As a second example we consider a step-index aniso-

tropic fiber with the dyadic parameter

(54)< = Cz(l+ AP(p))(Ic-t-rm)

and the same definitions for the symbols as in the previous

example. This time, the fiber is fabricated on an aniso-

tropic cladding material, and the anisotropy is the same in

the core.

Unlike in the previous example, the functional cannot be

simplified in a form corresponding to (48). Hence, we must

work with the general functional (21). Writing

6“=62(1+AP(P))A” (55)

Cw = C2(1+ AP(p))AW (56)

we substitute (22) in (21). Applying (29), (30), (31), and

(38) for the trial function, optimizing the parameters a and

y, we have the dispersion relations shown in Figs. 10
,. and 11. It is seen that the effect of the parameter A is much

less pronounced than in the case A. This is easily under-

stood from the difference of the definitions (42) and (54).

In fact, taking AW =1 and Au = 1 + q, itis seen that in (42)

the anisotropic parameter q appears in the term qAPc200,

. whereas in (54) the corresponding term is q(l + AP) cZvv,

which does not vanish for A = O. This means that the term

0.7

0.6
1

0.5

0.4

.7 1 LJ =0.004
‘“2q j’ ~ =0.006 -----

0.2-/ [ A =o. olo–-–

/
o.lj4bl, l#!#ll,lt,l,t, ,,t ,1, ~

v

1 2 3 4 5 ‘6

Fig. 10. Dependence of the dispersion relation on the dielectric parame-

ter A for the anisotropic parameter A = 0.9998.

U
./:/,;{/

0.5 .;? Rw=l. OOOo

.;! Rv=l. OOOo —

0.4 ,J fi”=l .0002

v7

0.3 ,/1
-Q =f300134 . . . . .

~ =0.006 -----

0.2 j Q =o.olo_.._.-

,;!

o.ll”4! lrltlll, llTl, ill!, l ,!,1
v

1 2 3 4 5 6

Fig. 11. Same as in Fig. 10 for A = 1.0002.

qA is replaced by q in many contexts for weakly guiding

fibers, and thus A has a minor effect on the propagation

properties.

The same can also be seen from an asymptotic consider-

ation of the birefringence parameter B, (52). If we ap-

proximate for low anisotropy the ratio of the propagation

factors &//3W ‘by fi, which corresponds to the ratio for ‘

plane waves polarized in the w- and v-directions, we have

B = q/2 (57)

which does not depend on the parameter A.

Calculations from the functional for low values of A and

q (around 10-3 - 10-4) show that B defined by (57) is a

valid approximation for values of V between 1 and 6 with

less than a l-percent error.

V. CONCLUSION

Applying the theory of nonstandard eigenvalue problems

and variational principles, a stationary functional for di-

electric open waveguides with transverse anisotropic dielec-

tric tensor was constructed. The functional was tested for

isotropic well-known step-index circular fibers and was

seen to give results for two-parameter test functions with
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less than 1 percent of error in the interesting range of

frequencies. Further, the functional was applied for two

types of anisotropic optical fibers: one with anisotropic

core and other with a both core and cladding anisotropic.

For low anisotropy and weak guidance, approximate ex-

pressions for the birefringence of the two HEII modes were

seen to result in analytic form. The method seems applica-

ble to more complicated problems with more parameters in

the test functions. In the present form, however, a com-

puter of very modest capacity or even a programmable

calculator is sufficient.
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An Implantabk Electric-Field Prob6 of
Submillirneter Dimensions

T. E. BATCHMAN, SENIOR MEMBER, IEEE, AND GEORGE GIMPELSON, MEMBER, IEEE

Abstract —Many areas of biological research await the development of

practical electric (E)-field probes with submilfiieter dimensions for in situ
measurements of RF electromagnetic fields. This paper reports on the

design, fabrication, and testing of such a probe. The probe consists of a

0.6-mm dipole antenn~ a zero-bias Schottky barrier diode and a unique

highly resistive output lead structure. Experimental results indicate the

probe does not perturb the field under investigation and is ffnear over a

range of field strengths from less than 60 to over 1200 V/m. The probe has

been designed so as to he independent of the media in which measurements

are being made.

I. INTRODUCTION

I N THE MID-1970’s a series of articles appeared in the

New Yorker, written by Paul Brodeur [1], which brought

to the public’s attention the present controversy over the

question of what constitutes a safe level of electromagnetic

radiation. The debate now centers around the criteria used

by the U.S. to establish an exposure limit. Initially, it was

assumed that only the thermal effects were hazardous, and

so all that needed to be considered was the rate at which

the human body dissipated the thermal energy.
However, in the last 15 years an impressive amount of

evidence has been accumulated which demonstrates the

existence of” nonthermrd” effects [2]–[5]. In the late 1960’s,

Dr. W. R. Adey (then with the Brain Research Institute of

UCLA) and A. H. Frey of Randomline, Inc., advanced

theories on the biological effects of very low intensity
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microwaves,’ amd collected experimental evidence for theo-

retical verification [6]. In the early 1970’s Dr. K. V.

Sudakov at F’. K. Anokhin Institute in Moscow induced

profound EEG and behavioral changes in mice using ELF

modulated microwaves. Dr. R. Carpenter of the Bureau of

Radiological Health is presently attempting to determine if

there is a correlation between the formation of cateracts,

and microwave exposure. This concern over the effects of

low-level non-ionizing radiation has led to a dem&d for

more accurate methods of measuring electromagnetic fields

within biological media.

Currently, there are three methods available” for de-

termining the strength of internal electromagrietic fields:

the electric (E)-field probe, thermography, and the temper-

ature probe. A comparison of these three internal dosimet-

ric techniques has been made by H. Bassen et al., [7] and it

was noted that the E-field probe measurement is the o~y

technique which directly monitors the electric field. Conse-

quently, it neither depends on observed secondary effects
nor assumes that all the internally’ deposited energy is

transformed to heat. Both the temperature probe and ther-

mography require a knowledge of the mass density and

specific heat of the investigated region to determine the

specific absorption rate. Furthermore, the sensitivity of

these two methods is not great enough to allow for dosin-te-

try at incident power densities of less than 10 mW/cm2, as
is often needed for low.intensity microwave research. we

E-field probe does not suffer from these limitations, and

has the advantage of continuous line scan capability and

media independence.
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